
Published as a conference paper at COLM 2025

Cutting the Root of Hallucination: Structural Trimming for
Vulnerability Mitigation in Code LLMs

Yage Zhang
CISPA Helmholtz Center for Information Security

Abstract

We introduce a structural perspective on hallucinations in code-generating
language models, framing them as causality anchors in syntax graphs that
trigger cascading semantic errors and latent security flaws. This work is the
first to systematically connect code hallucinations with vulnerability risks,
offering a unified conceptual and practical framework to address them. At
the heart of our approach is the notion of hallucination anchors, localized
subtrees in the abstract syntax tree (AST) that serve as root causes of de-
fective logic. We propose Structural Trimming (ST), a targeted mitigation
method that removes these anchors while preserving functional seman-
tics. To anticipate the effect of trimming, we introduce the Compositional
Structural Hallucination Score (CSHS), which quantifies the likelihood
that pruning will improve robustness. By grounding error reduction in
the syntax graph itself, our method reframes hallucination mitigation as a
structured intervention process interpretable, generalizable, and actionable.

1 Introduction

Large Language Models (LLMs) have significantly advanced automated code genera-
tion Jiang et al. (2024a); Liu et al. (2023a); Thakur et al. (2024), achieving state-of-the-art
results across tasks such as autocompletion, debugging, and synthesis Chen et al. (2021);
Nijkamp et al. (2023); Li et al. (2023); Huynh & Lin (2025). However, with increasing capa-
bilities comes a growing concern: LLMs frequently produce hallucinated code plausible
yet incorrect outputs that may violate functional requirements or embed latent security
risks Ji et al. (2023b); Tambon et al. (2025). While prior work has predominantly addressed
syntactic accuracy or model calibration, the security implications of hallucinations remain
underexplored.

In this paper, we posit that hallucinations in code are not merely transient generation
errors, they constitute structured precursors to real-world vulnerabilities. Unlike superficial
mistakes (e.g., typos or API misuse), hallucinated variables, conditions, or control flows may
propagate through the AST, forming entangled symbolic dependencies that are difficult to
detect or rectify post hoc. These artifacts often persist across abstraction layers, misleading
developers and enabling logic flaws.

We pursue this perspective through three research questions:

RQ1. How does hallucination severity relate to vulnerability risk? Can this relationship be
modeled and predicted?

RQ2. Do hallucinations follow detectable structural patterns?

RQ3. Can we design effective structure-aware repair methods to reduce risk while
preserving semantics?

To answer these, we construct a large-scale analysis pipeline for hallucination-driven risk as-
sessment. Using MBPP Austin et al. (2021a), HumanEval Chen et al. (2021), and structurally
annotated examples from Collu-Bench, we collect and label 7,233 hallucinated samples
across four LLMs (GPT-4o, DeepSeek-Coder-1.3B, CodeLlama-7B, Gemini-2.0-flash) over
diverse tasks. We introduce a taxonomy of hallucination behaviors e.g., persistent, early-cut,

1

Published as a conference paper at COLM 2025

recurrent, and oscillating, inspired by prior propagation typologies Ji et al. (2023b). Each
sample is assigned a deviation score (D) and a vulnerability estimate (V), based on execution
feedback and error severity.

To mitigate the security impact, we propose Structural Trimming (ST), a post-hoc repair
method operating on the Abstract Syntax Tree. ST identifies and prunes hallucination
anchors and their dependent subtrees. Unlike prompt engineering, RLHF Ouyang et al.
(2022), or token-level filtering Liu et al. (2023b), our method leverages structural signals
to preserve program intent while eliminating risky artifacts. We further introduce the
Compositional Structural Hallucination Score (CSHS) to preemptively estimate the potential
benefit of trimming a given sample.

This work offers:

• A structurally annotated dataset of LLM hallucinations with vulnerability metadata,
enabling security-oriented generation analysis;

• Empirical evidence linking hallucination severity to vulnerability risk, supported
by statistical and execution-based analyses;

• A structure-aware repair method (ST) outperforming Prompt Rewriting and Token
Pruning in vulnerability reduction and semantic retention;

• A predictive scoring function (CSHS) for hallucination risk, grounded in AST-level
signals.

In summary, our findings reframe hallucinations not merely as model inaccuracies, but as
structured, measurable, and actionable sources of software risk in LLM-based development
workflows.

2 Extended Related Work

Hallucinations in LLM Code Generation. Large Language Models (LLMs) have achieved
impressive success in code generation Jiang et al. (2024b), but hallucination remains a
persistent and underexplored challenge. Hallucinations in LLM-generated code typically
manifest as factual errors (e.g., nonexistent APIs Akhtarshenas et al. (2025); Chen et al.
(2025)) or functional errors (e.g., logic bugs causing runtime failures such as NameError) Ji
et al. (2023b). Prior work has primarily focused on evaluating functional correctness using
benchmarks such as HumanEval Chen et al. (2021), MBPP Austin et al. (2021b). However,
these approaches rarely address how hallucinations structurally propagate or induce long-
range effects on code safety and security.

Adversarial Code Generation and Prompt Attacks. Beyond unintentional errors, LLMs
can be deliberately manipulated to produce faulty or unsafe code through prompt injec-
tion Greshake et al. (2023); Liu et al. (2023c) or adversarial jailbreak Shayegani et al. (2023);
Liu et al. (2024). These methods exploit LLMs’ sensitivity to instruction phrasing and
contextual prompts. However, they focus on adversarial behavior rather than organic
hallucinations.

Software Security and Vulnerability Evaluation in LLM Outputs. Recent works em-
phasize evaluating vulnerabilities in generated code using CVSS scoring1. While these
frameworks assess security outcomes, few explore how hallucination contributes to vulner-
ability emergence. Our approach provides a causal modeling framework linking structural
deviation from ground truth to vulnerability risk.

Evaluation Benchmarks and Hallucination-Aware Datasets. While benchmarks like
HumanEval Chen et al. (2021), MBPP Austin et al. (2021b) provide functional evaluations,
they lack hallucination labels. Collu-Bench is the only known dataset with hallucination-
specific annotations, but it does not capture structural propagation.

1CVSS v3.1 Specification:https://www.first.org/cvss/specification-document

2

https://www.first.org/cvss/specification-document

Published as a conference paper at COLM 2025

Structural Defenses and Hallucination Mitigation. Prior hallucination mitigation ef-
forts include RLHF Ouyang et al. (2022); Wang et al. (2025); Krishna et al. (2025), output
reranking Liu et al. (2023b), or post-generation patching. However, these methods typically
operate at the token level or rely on downstream filtering. To our knowledge, no existing
approach systematically models hallucination structure and causality.

3 Problem Formulation and Risk Modeling

We model the emergence of vulnerabilities in LLM-generated code as a consequence of
nonadversarial hallucinations,structurally plausible, yet semantically invalid constructs
arising during generation.

Threat Model and Deployment Context. We consider a non-adversarial setting where
LLM-generated code is integrated into development workflows (e.g., auto-completion,
boilerplate generation) without formal verification. No prompt manipulation or malicious
intent is assumed; our focus is on hallucination-induced vulnerabilities, unintended artifacts
that may compromise functionality or security when deployed unvetted.

Risk Variables and Reference Ground Truth. Given a prompt x, model output ŷ, and
reference implementation y∗ (e.g., from HumanEval or MBPP), we define hallucination
deviation D(ŷ, y∗) and vulnerability risk V(ŷ) as structural and behavioral metrics capturing
divergence and failure potential. These serve as the foundation for our subsequent modeling
and analysis.

3.1 Core Variables and Risk Modeling

Let ŷ denote the hallucinated code generated by a language model for prompt x, and y∗ the
closest ground-truth implementation. We define three key variables: hallucination deviation
D, vulnerability probability V, and task complexity T.

Hallucination Deviation (D). We quantify deviation as a composition of structural and
behavioral divergences:

D = λ1 · EditDist(A(ŷ),A(y∗)) + λ2 ·Mismatch(B(ŷ),B(y∗)), (1)

whereA(·) is the Abstract Syntax Tree (AST) Alon et al. (2019), B(·) the behavioral execution
signature (e.g., test traces), and λ1, λ2 ∈ [0, 1] are balancing weights (default: 0.5). Note that
D serves as a deviation risk index rather than a true distance, capturing both structural and
semantic divergence Feng et al. (2020).

Vulnerability Risk (V). We define V ∈ [0, 1] as a continuous proxy for vulnerability
probability:

V = σ
(
α1Etype + α2Eexec + α3 log ptoken

)
, (2)

where Etype is the error severity score (e.g., NameError = 0.8), Eexec indicates assertion/test
failure, and ptoken is the mean log-probability of hallucinated tokens Liu et al. (2023b),
aligned with prior work using runtime signals and likelihood estimates for risk modeling.

Task Complexity (T). To normalize risk across different prompt complexities:

Tcombine = Tquestion + Tmeta, (3)

where Tquestion is the prompt length in tokens, and Tmeta reflects static complexity (e.g.,
branching, depth).

3.2 Dataset and Experimental Setup

We construct a dataset of 7,233 hallucinated code samples generated from four leading
code LLMs—GPT-4o (OpenAI), DeepSeek-Coder-1.3B, CodeLlama-7B, and Gemini-2.0-flash
using prompts drawn from three sources: MBPP Austin et al. (2021b), HumanEval Chen
et al. (2021), and a curated set of 300 security-focused generation tasks.

3

Published as a conference paper at COLM 2025

Each generated sample is paired with a reference implementation and annotated with: (i) the
hallucination anchor and type (e.g., undefined identifiers, semantic drift); (ii) a vulnerability
score (V) quantifying security risk and repairability; (iii) semantic deviation metrics (D,
BLEU, AST edit distance); and (iv) structural signals such as hallucination chain length
(HCL), pruning ratio (PR), and entropy.

These annotations enable structural modeling of hallucinations and their role in security
degradation. Full details, including prompt design, anchor detection methodology, V
scoring scheme, and sandbox execution pipeline, are provided in Appendix D.

4 Structural Risk Signals and CSHS Scoring

We now introduce our structural signal extraction pipeline, annotation mechanisms, and
the unified scoring model (CSHS).

4.1 Hallucination Annotation Pipeline

Token-Level Anchor Detection. We locate the first hallucinated token ŷi∗ not semantically
aligned with any y∗j :

i∗ = min{i | ŷi ̸∼ y∗j ∀j ∈ [1, |y∗|]}. (4)

AST-Based Hallucination Typing. Each hallucinated sample is encoded into an AST path
sequence and classified using a transformer-based model:

htype = fASTClass(ASTSeq(ŷ)). (5)

4.2 Structure-Aware Signal Extraction

To characterize how hallucinations propagate through the code structure, we extract five
structural indicators from the AST of ŷ. Several of these, such as entropy and chain length,
are inspired by classical program complexity and slicing metrics Weiser (1984); McCabe
(1976); Halstead (1977), but repurposed to capture generation-induced anomalies:

• HCL (Hallucination Chain Length): Number of AST hops from the hallucination
anchor to the deepest dependent node.

• APS (Anchor Persistence Score): Number of references to hallucinated symbols
across AST subtrees.

• PR (Pruning Rate): Proportion of nodes removed during minimal repair:

PR =
|TrimmedNodes|
|TotalNodes| (6)

• SCP (Shortest Correction Path): Shortest AST path from the hallucination anchor
to a valid, ground-truth subtree.

• Entropy (H): Structural entropy over token types in the AST:

H = − ∑
t∈T

pt log pt (7)

These signals provide interpretable structure-level cues for hallucination detection and
repair. For instance, consider a hallucinated snippet where a nonexistent variable foo is
used in a nested if-else block. APS reflects the spread of foo references across multiple
AST subtrees; HCL captures the depth of its influence from anchor to dependent (e.g., a
nested return); SCP denotes how easily the subtree can reconnect to valid logic (e.g., by
replacing foo with bar); Entropy increases if the subtree contains diverse token types such
as If, Name, Call; and PR reflects how much of that subtree is pruned in the repair process.

Unlike traditional static analysis tools such as CodeQL GitHub Security Lab (2021), which
operate on semantic correctness and symbolic flow, our approach quantifies the structural

4

Published as a conference paper at COLM 2025

footprint of hallucinations, even when they remain syntactically valid but semantically
misleading. This enables hallucination-aware trimming without requiring ground-truth
semantics or runtime traces.

Contrast with Traditional Analysis. Unlike static program analysis, which identifies se-
mantic errors through complete control/data flow, our method targets structurally plausible
yet semantically spurious constructs generated by LLMs. Hallucinated anchors are syn-
tactically valid but causally misleading. Structural signals such as APS and HCL capture
their generative propagation, offering a lightweight, language-model-aware alternative to
traditional tools like CodeQL GitHub Security Lab (2021), which overlook such contextual
hallucinations.

4.3 Compositional Risk Scoring with CSHS

We integrate the five structural indicators into a unified scoring framework, the Composi-
tional Structural Hallucination Score (CSHS):

CSHS = w1 ·HCL + w2 ·APS + w3 · H︸ ︷︷ ︸
Rrisk

+w4 · PR− w5 · SCP︸ ︷︷ ︸
Rrecover

(8)

All features are min-max normalized to [0, 1]. The score is constructed as a weighted
combination of structure-derived features, following established practice in risk modeling
for software faults Zimmermann et al. (2007). Weights are tuned via grid search on validation
accuracy of post-trimmed vulnerability risk. We determine optimal weights wi via grid
search (see Appendix I):

w1 = 0.116, w2 = 0.266, w3 = 0.017, w4 = 0.440, w5 = 0.161

This score serves both as a hallucination risk estimator and as a pruning controller in
our structural repair pipeline. Intuitively, pruning rate (w4) receives the highest weight,
reflecting that hallucinations are most dangerous when they cannot be easily removed.
Anchor persistence (w2) and chain length (w1) quantify how deeply the error spreads, while
entropy (w3) plays a minor role, capturing only coarse structural irregularity. The correction
path (w5) penalizes entangled errors that require complex recovery.

5 Why Hallucinations are Dangerous?

To address RQ1, we investigate whether hallucinations in LLM-generated code systemati-
cally correlate with known vulnerability types. While often dismissed as superficial errors,
we posit that hallucinations encode latent structural signals that predispose code to security
failures.

5.1 Hallucination–Vulnerability Alignment via Structural Modeling

We hypothesize that hallucinations align with specific vulnerability types in non-random,
learnable ways. A two-stage classification, first through lexical heuristics, then with struc-
tural features derived from AST, confirms this: as shown in Figure 1a, structural modeling
significantly improves alignment with annotated vulnerability labels.

The heatmap shows consistent mappings between hallucination types and vulnerability pat-
terns, suggesting that even syntactically valid hallucinations often carry predictable security
risks. Cosine similarity analysis confirms strong alignment for structurally grounded types,
while semantically complex cases (e.g., Logic Deviation) benefit from AST-based feature
integration. Full details appear in Appendix E.

5

Published as a conference paper at COLM 2025

CBH
DCH

ES
H IDH

LB
D

LD
V

PC
H

SA
H

Hallucination Type

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

Vulnerability Association Patterns
Vulnerability Types

Suspicious_Comparison
Potential_Overflow
Potential_InfiniteLoop

None
No_Exception_Handling

Index_Error
Code_Injection

(a) Hallucination–vulnerability
mapping.

(0.00258, 0.112]

(0.112, 0.214]

(0.214, 0.306]

(0.306, 0.39]

(0.39, 0.477]

(0.477, 0.567]

(0.567, 0.658]

(0.658, 0.753]

(0.753, 0.871]

(0.871, 0.999]

Deviation (D) Bins

0.0

0.2

0.4

0.6

0.8

1.0

Vu
ln

er
ab

ilit
y

(V
)

Vulnerability Distribution Across Deviation Bins

(b) Risk increases with hallucina-
tion severity.

0.0 0.2 0.4 0.6 0.8 1.0
Deviation (D)

0.0

0.2

0.4

0.6

0.8

1.0

Vu
ln

er
ab

ilit
y

(V
) High-risk area

 Small deviations lead to big loopholes

Abnormal area
 Large deviation low vulnerability

Nonlinear Density Pattern: Deviation vs Vulnerability
(Red lines mark critical thresholds)

0.249

0.738

1.094

1.520

1.845

2.096

2.339

2.729

De
ns

ity
 C

on
ce

nt
ra

tio
n

(c) Nonlinear D–V distribution.

Figure 1: Structural and statistical alignment between hallucination patterns and vulnera-
bility risk. Left: Structural mapping via AST modeling. Middle/Right: Risk trends across
hallucination severity with non-linear failure zones.

5.2 Correlation Between Hallucination Severity and Vulnerability Risk

We examine the relationship between hallucination severity, quantified as structural and
semantic deviation (D), and vulnerability risk (V), hypothesizing a positive correlation:

D ∝ V.

Deviation is computed via AST and execution divergence from reference outputs; vulnera-
bility is estimated through error types and severity annotations.

Regression and Feature Contribution. While linear regression confirms a statistically
significant association between structural deviation (D) and vulnerability, its explanatory
power is limited. In contrast, non-linear models, particularly random forests, demonstrate
strong predictive performance, with error type as the dominant feature and D consistently
among the top contributors.

These findings support three conclusions: (1) deviation is a reliable proxy for risk; (2) even
small deviations can yield high vulnerability, exposing non-obvious failure modes; and
(3) structure-aware modeling enhances detection, outperforming shallow metrics via AST
and execution-level signals.

5.3 Does Task Complexity Influence Hallucination-Induced Vulnerability?

We investigate whether task complexity modulates the vulnerability risk (V) of halluci-
nated code, using three metrics: prompt complexity (Tquestion), test case complexity (Tmeta),
and their combination (Tcombined). Samples are partitioned via median splits, and linear
regression is used to assess associations.

As shown in Figure 2, only test case complexity (Tmeta) exhibits a significant inverse rela-
tionship with vulnerability. In contrast, prompt length and combined complexity show no
consistent trends. These results suggest that structurally rich test specifications contribute
more to risk mitigation than input length alone.

These results challenge the intuition that task difficulty directly increases hallucination
risk. Instead, structured test specifications may function as regularizing signals: anchoring
generation to semantically valid behaviors and constraining harmful divergence.

6 How to Defend Hallucinations Structurally?

To address RQ2 and RQ3, we propose and evaluate Structural Trimming, a defense that
prunes hallucination chains from ASTs to reduce vulnerability. We compare it against
prompt rewriting, semantic filtering, and token-level pruning, showing it achieves superior

6

Published as a conference paper at COLM 2025

Low Complexity High Complexity
Complexity Group

0.0

0.2

0.4

0.6

0.8

1.0
Vu

ln
er

ab
ilit

y
Pr

ob
ab

ilit
y

(V
)

High: =0.557 vs Low: =0.610
 Slope = -0.027 (p = 0.000)

Welch's t-test: *** (p = 0.000)

Low Complexity High Complexity
Complexity Group

0.0

0.2

0.4

0.6

0.8

1.0

Vu
ln

er
ab

ilit
y

Pr
ob

ab
ilit

y
(V

)

High: =0.587 vs Low: =0.608
 Slope = 0.000 (p = 0.215)

Welch's t-test: *** (p = 0.000)

Low Complexity High Complexity
Complexity Group

0.0

0.2

0.4

0.6

0.8

1.0

Vu
ln

er
ab

ilit
y

Pr
ob

ab
ilit

y
(V

)

High: =0.587 vs Low: =0.608
 Slope = 0.000 (p = 0.301)

Welch's t-test: *** (p = 0.000)

Figure 2: Vulnerability probability V across task complexity dimensions. Only Tmeta exhibits
a significant inverse relationship with risk.

(a) Clean (b) Persistent (c) Early Cut (d) Mid Cut

(e) Late Hallucination (f) Recurrent
(g) Oscillating

Figure 3: Structural patterns of hallucination types and suggested pruning locations. Red
nodes denote hallucination anchors, and dashed lines indicate propagation. Scissors mark
ideal cut points.

risk reduction while preserving code quality. Furthermore, we introduce CSHS, a structural
score that predicts whether a hallucination is trim-worthy.

6.1 Structural Hallucination Chains Exist

Beyond isolated token-level anomalies, many hallucinations in code generation manifest as
structural dependency chains in the Abstract Syntax Tree (AST). A hallucinated anchor (e.g., a
non-existent configuration object) may propagate through conditionals, assignments, and
return paths, forming entangled subtrees that influence program behavior.

Figure 3 illustrates seven representative propagation topologies observed in our dataset,
including persistent, recurrent, mid-cut, and oscillating patterns. These structures highlight
how hallucinated tokens percolate through multiple layers of program logic.

To quantify these phenomena, we define Hallucination Chain Length (HCL) as the number
of AST nodes transitively dependent on the hallucinated anchor. Trimming these chains
allows us to compute risk reduction ∆V = Voriginal −Vtrimmed.

Empirically, we observe a positive correlation between HCL and ∆V, indicating that longer
chains carry greater security risk. The full trend, including variance bands and sample
support across HCL values, is presented in Appendix F).

6.2 Trimming-Based Risk Mitigation

We operationalize Structural Trimming as detailed in Algorithm 1, which recursively prunes
structurally entangled hallucination spans from the AST and applies minimal patching
when necessary (Appendix G).

Effectiveness and Predictive Modeling. We assess three trimming strategies Early Cut, Mid
Cut, and Persistent Cut, report their risk mitigation effectiveness in Table 1. Results show
that earlier interventions generally yield greater vulnerability reduction, particularly for
persistent and recurrent hallucinations.

7

Published as a conference paper at COLM 2025

Category Label Avg. ∆V Std. Dev.

Trimming Strategy
Early Cut 0.212 0.058
Mid Cut 0.174 0.046
Persistent Cut 0.143 0.065

Hallucination Type

persistent 0.236 0.051
recurrent 0.205 0.059
mid cut 0.172 0.048
early cut 0.141 0.037
oscillating 0.118 0.045

Table 1: Risk reduction (∆V) by trimming strategy and hallucination type. Early interven-
tions yield higher gains, especially for persistent and recurrent patterns.

CSHS demonstrates robust generalization across LLMs and code-generation tasks, main-
taining high predictive accuracy without retraining.

We propose the Compositional Structural Hallucination Score (CSHS) as a predictive
metric for trimming efficacy. As shown in Figure 4, CSHS aligns well with observed risk
reduction and supports reliable identification of high-impact cases.

Attribution analysis (Figure 5) indicates that pruning-aware features dominate prediction
performance, while low-level structural signals contribute marginally.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Composite Structural Hallucination Score (CSHS)

0.1

0.2

0.3

0.4

0.5

Ri
sk

 R
ed

uc
tio

n
(

V)

CSHS vs. Risk Reduction
Pruning Strategy
Mid Cut

Persistent Cut
Early Cut

Hallucination Type
Persistent

Recurrent
Clean

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

ROC Curve (AUC = 0.989)
Classification Threshold: V > 0.30

AUC = 0.99

Figure 4: Left: Correlation between CSHS and trimming-induced risk reduction (∆V). Right:
ROC curve for classifying effective trimming (∆V > 0.3) using CSHS.

3 2 1 0 1 2 3
SHAP value (impact on model output)

CSHS

Fe
at

ur
es

SHAP Value Distribution for CSHS
(Impact on Classification)

Low

High

Fe
at

ur
e

va
lu

e

Figure 5: SHAP summary plot for CSHS-informed classifier. Higher values in PR and SCP
contribute most to predicted risk.

6.3 Interpretability via Structural Case Studies

To analyze the structural dynamics of hallucination propagation and correction, we visualize
representative AST transformations before and after trimming (Figure 6).

The first example reflects a persistent hallucination, where early-stage anchors propagate
through multiple dependent branches, forming a deeply entangled structure. Trimming the
corresponding subtree removes the hallucination chain while preserving core functional
logic.

8

Published as a conference paper at COLM 2025

The second example illustrates a localized hallucination, where the anchor appears in a
shallow, isolated position. In such cases, correction requires minimal structural intervention.

These patterns highlight how the correctability of hallucinations depends on their structural
locality and dependency depth, supporting AST-guided trimming as an effective and
interpretable mitigation strategy.

config = {"enabled": True,

"init_mode": "safe"}

def setup(cfg):

initialize(cfg["init_mode"])

if cfg["fast_val"]: #

hallucination anchor

run_fast_mode()

else:

run_safe_mode()

def pipeline():

if config["enabled"]:

setup(config)

return config["result_path"]

Module

Assign (config = ...)

Function Def setup

Function Def pipeline

If (cfg["fast_val"])

run_fast_mode()

run_safe_mode()

If (config["enabled"])

setup(config)

Return (config["result_path"])

Module

Assign (config = ...)

Function Def setup

Function Def pipeline

initialize(cfg["init_mode"])

If (config["enabled"])

setup(config)

Return (config["result_path"])

Hallucination
Anchor

Before Trimming After TrimmingGenerate code

(a) Persistent hallucination: trimming deep con-
ditional chains.

def train_model(data):

model = build_model()

history = []

for epoch in range(3):

outputs =

model.forward(data)

history.append(outputs)

log_training(history)

return model["final_state"]

Module

Assign (model = ...)

Expr (log_training(...))

Assign (history = [])

Return (config["result_path"])

Hallucination
Anchor

For (epoch in range(3))

outputs = model.forward(...)

history.append(outputs)

Module

Assign (model = ...)

Expr (log_training(...))

Assign (history = [])

Return (history[-1])

For (epoch in range(3))

outputs = model.forward(...)

history.append(outputs)

Before Trimming After TrimmingGenerate code

(b) Late hallucination: pruning a shallow erro-
neous return.

Figure 6: Structural pruning of hallucination chains. Left: Before trimming. Right: After
trimming. Red nodes denote hallucinated anchors; dashed boxes indicate pruned regions.

6.4 Comparative Effectiveness of Structural Trimming

While hallucination mitigation is well-studied in natural language generation, methods
targeting vulnerability-inducing hallucinations in code remain limited. We address this
by comparing our method, Structural Trimming (ST), to three adapted baselines: Prompt
Rewriting (PR), Semantic Filtering (SF), and Token-Level Pruning (TP).

These strategies span different abstraction levels from prompt modification to token trun-
cation while ST performs AST-level pruning to remove structural hallucinations post hoc.
Evaluation on 1000 hallucinated samples (Table 2) considers vulnerability reduction, safety,
and code fidelity.

Strategy Avg. Vbefore Avg. Vafter ∆V Safety % Retention % BLEU / AST

PR 0.92 0.66 0.26 38% 56% 0.65 / 0.60
SF 0.91 0.61 0.30 44% 63% 0.77 / 0.81
TP 0.93 0.48 0.45 54% 38% 0.42 / 0.35
ST (Ours) 0.92 0.33 0.59 60% 62% 0.80 / 0.84

Table 2: Evaluation of hallucination repair strategies over 1000 randomly sampled instances.
ST achieves the best trade-off between risk mitigation and code fidelity.

Structural Trimming (ST) offers the best trade-off between risk reduction and code fidelity.
Unlike aggressive or shallow strategies, ST precisely removes structural hallucinations while
preserving usability. Its fallback mechanism ensures robustness with minimal side effects,
placing it on the safety–fidelity Pareto frontier.

7 Discussion

We frame code hallucinations not as isolated errors but as structurally entangled artifacts,
often forming transitive symbolic chains within ASTs that propagate semantic faults. Our
analysis shows that vulnerability is less determined by hallucination depth than by its
recoverability the feasibility of structurally pruning it without disrupting valid logic.

Structural Trimming (ST) exploits this principle, enabling targeted AST-level repairs. Abla-
tion studies confirm that pruning viability (e.g., pruning rate, correction path) is a stronger

9

Published as a conference paper at COLM 2025

predictor of risk reduction than structural complexity alone. The proposed CSHS metric
captures this insight, serving as a model-agnostic proxy for hallucination severity.

However, CSHS remains descriptive and handcrafted. Future work may model hallucina-
tion propagation as a generative causal process, e.g., via Hallucination Causality Graphs
that trace symbolic dependencies from anchor tokens. This would enable both diagnos-
tic and preventative interventions, bridging program structure with causal reasoning in
LLM outputs. Future directions include causal modeling of hallucination dynamics and
integration with training-time constraints.

8 Conclusion

This work introduces a structural approach to hallucination mitigation in LLM-generated
code. We propose Structural Trimming (ST) to excise hallucination chains from ASTs, and
develop CSHS, a compositional score predicting trim worthiness based on structural cues.

Evaluations on 7K hallucinated samples across models and tasks show that ST achieves
superior vulnerability reduction compared to prompt and token-level baselines, while
preserving syntactic fidelity. CSHS generalizes without retraining, highlighting structural
risk as a transferable signal.

By treating hallucinations as analyzable structural phenomena, this work offers practical
tools and conceptual grounding for robust, interpretable code generation. Code and data
will be released to support reproducibility and further research.

References
Azim Akhtarshenas, Afshin Dini, and Navid Ayoobi. Chatgpt or a silent everywhere

helper: A survey of large language models. arXiv preprint arXiv:2503.17403, 2025. URL
https://arxiv.org/abs/2503.17403.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages, 3(POPL):1–29,
2019. URL https://dl.acm.org/doi/10.1145/3290353.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrson Jones, Michael Terry, Quoc Le, and Charles Sutton. Program
synthesis with large language models, 2021a. URL https://arxiv.org/abs/2108.07732.
MBPP dataset introduced in Section 6.

Jacob Austin, Augustus Odena, Maxwell Nye, and et al. Program synthesis with large
language models. In NeurIPS, 2021b. URL https://arxiv.org/abs/2108.07732.

Jingyi Chen, Songqiang Chen, Jialun Cao, Jiasi Shen, and Shing-Chi Cheung. When llms
meet api documentation: Can retrieval augmentation aid code generation just as it helps
developers? arXiv preprint arXiv:2503.15231, 2025. URL https://arxiv.org/abs/2503.
15231.

Mark Chen, Jerry Tworek, Heewoo Jun, and et al. Evaluating large language models
trained on code. In Advances in Neural Information Processing Systems, 2021. URL https:
//arxiv.org/abs/2107.03374.

Zhangyin Feng, Daya Guo, Duyu Tang, and et al. Codebert: A pre-trained model for
programming and natural languages. arXiv preprint arXiv:2002.08155, 2020. URL https:
//arxiv.org/abs/2002.08155.

GitHub Security Lab. Codeql: Semantic code analysis engine. https://codeql.github.com/,
2021. URL https://codeql.github.com/.

Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres, Thorsten Holz, and
Mario Fritz. Not what you’ve signed up for: Compromising real-world llm-integrated

10

https://arxiv.org/abs/2503.17403
https://dl.acm.org/doi/10.1145/3290353
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2503.15231
https://arxiv.org/abs/2503.15231
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2002.08155
https://arxiv.org/abs/2002.08155
https://codeql.github.com/
https://codeql.github.com/

Published as a conference paper at COLM 2025

applications with indirect prompt injection. In Proceedings of the 16th ACM Workshop on
Artificial Intelligence and Security, pp. 79–90, 2023. URL https://dl.acm.org/doi/abs/10.
1145/3605764.3623985.

Maurice H. Halstead. Elements of software science (operating and programming systems
series). 1977. URL https://dl.acm.org/doi/10.5555/540137.

Sungmin Han, Miju Kim, Jaesik Kang, Kwangsoo Kim, Seungwoon Lee, and Sangkyun Lee.
Similarity-based source code vulnerability detection leveraging transformer architecture:
Harnessing cross-attention for hierarchical analysis. IEEE Access, PP:1–1, 01 2024. doi:
10.1109/ACCESS.2024.3474857. URL https://www.researchgate.net/publication/
384719615 Similarity-Based Source Code Vulnerability Detection Leveraging
Transformer Architecture Harnessing Cross-Attention for Hierarchical Analysis.

Nam Huynh and Beiyu Lin. A survey on large language models for code generation. arXiv
preprint arXiv:2503.01245, 2025. URL https://arxiv.org/abs/2503.01245.

Zhecheng Ji, Nayeon Lee, Zonghai Tan, and et al. Survey of hallucination in natural
language generation. ACM Computing Surveys, 2023a. URL https://dl.acm.org/doi/10.
1145/3571730.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin
Bang, Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language
generation. ACM computing surveys, 55(12):1–38, 2023b. URL https://dl.acm.org/doi/
abs/10.1145/3571730.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large
language models for code generation. arXiv preprint arXiv:2406.00515, 2024a. URL
https://arxiv.org/abs/2406.00515.

Yukun Jiang, Xinyue Shen, Rui Wen, Zeyang Sha, Junjie Chu, Yugeng Liu, Michael Backes,
and Yang Zhang. Games and beyond: analyzing the bullet chats of esports livestreaming.
In Proceedings of the International AAAI Conference on Web and Social Media, volume 18, pp.
761–773, 2024b.

Arjun Krishna, Erick Galinkin, Leon Derczynski, and Jeffrey Martin. Importing phantoms:
Measuring llm package hallucination vulnerabilities. arXiv preprint arXiv:2501.19012, 2025.
URL https://arxiv.org/abs/2501.19012.

Raymond Li, William Allal, Jacob Austin, and et al. Starcoder: May the source be with you!
arXiv preprint arXiv:2305.06161, 2023. URL https://arxiv.org/abs/2305.06161.

Fan Liu, Zhao Xu, and Hao Liu. Adversarial tuning: Defending against jailbreak attacks for
llms. arXiv preprint arXiv:2406.06622, 2024. URL https://arxiv.org/abs/2406.06622.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code
generated by chatgpt really correct? rigorous evaluation of large language mod-
els for code generation. Advances in Neural Information Processing Systems, 36:21558–
21572, 2023a. URL https://proceedings.neurips.cc/paper files/paper/2023/hash/
43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html.

Ximing Liu, Aitor Lewkowycz, Tao Yu, and et al. Lost in the middle: How language models
use long contexts. arXiv preprint arXiv:2307.03172, 2023b. URL https://arxiv.org/abs/
2307.03172.

Yi Liu, Gelei Deng, Yuekang Li, Kailong Wang, Zihao Wang, Xiaofeng Wang, Tianwei Zhang,
Yepang Liu, Haoyu Wang, Yan Zheng, et al. Prompt injection attack against llm-integrated
applications. arXiv preprint arXiv:2306.05499, 2023c. URL https://arxiv.org/abs/2306.
05499.

Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2
(4):308–320, 1976. URL https://ieeexplore.ieee.org/document/1702388.

11

https://dl.acm.org/doi/abs/10.1145/3605764.3623985
https://dl.acm.org/doi/abs/10.1145/3605764.3623985
https://dl.acm.org/doi/10.5555/540137
https://www.researchgate.net/publication/384719615_Similarity-Based_Source_Code_Vulnerability_Detection_Leveraging_Transformer_Architecture_Harnessing_Cross-Attention_for_Hierarchical_Analysis
https://www.researchgate.net/publication/384719615_Similarity-Based_Source_Code_Vulnerability_Detection_Leveraging_Transformer_Architecture_Harnessing_Cross-Attention_for_Hierarchical_Analysis
https://www.researchgate.net/publication/384719615_Similarity-Based_Source_Code_Vulnerability_Detection_Leveraging_Transformer_Architecture_Harnessing_Cross-Attention_for_Hierarchical_Analysis
https://arxiv.org/abs/2503.01245
https://dl.acm.org/doi/10.1145/3571730
https://dl.acm.org/doi/10.1145/3571730
https://dl.acm.org/doi/abs/10.1145/3571730
https://dl.acm.org/doi/abs/10.1145/3571730
https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2501.19012
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2406.06622
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2306.05499
https://arxiv.org/abs/2306.05499
https://ieeexplore.ieee.org/document/1702388

Published as a conference paper at COLM 2025

Erik Nijkamp, Shixiang Yao, Aakanksha Chowdhery, and et al. Codegen2: Lessons for
training llms on programming and natural languages. arXiv preprint arXiv:2305.02309,
2023. URL https://arxiv.org/abs/2305.02309.

Long Ouyang, Jeff Wu, Xu Jiang, and et al. Training language models to follow instructions
with human feedback. arXiv preprint arXiv:2203.02155, 2022. URL https://arxiv.org/
abs/2203.02155.

Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. Jailbreak in pieces: Compositional
adversarial attacks on multi-modal language models. arXiv preprint arXiv:2307.14539,
2023. URL https://arxiv.org/abs/2307.14539.

Florian Tambon, Arghavan Moradi-Dakhel, Amin Nikanjam, Foutse Khomh, Michel C
Desmarais, and Giuliano Antoniol. Bugs in large language models generated code: An
empirical study. Empirical Software Engineering, 30(3):1–48, 2025. URL https://link.
springer.com/article/10.1007/s10664-025-10614-4.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt,
Ramesh Karri, and Siddharth Garg. Verigen: A large language model for verilog code
generation. ACM Transactions on Design Automation of Electronic Systems, 29(3):1–31, 2024.
URL https://dl.acm.org/doi/full/10.1145/3643681.

Huandong Wang, Wenjie Fu, Yingzhou Tang, Zhilong Chen, Yuxi Huang, Jinghua Piao,
Chen Gao, Fengli Xu, Tao Jiang, and Yong Li. A survey on responsible llms: Inherent
risk, malicious use, and mitigation strategy. arXiv preprint arXiv:2501.09431, 2025. URL
https://arxiv.org/abs/2501.09431.

Mark Weiser. Program slicing. IEEE Transactions on Software Engineering, SE-10(4):352–357,
1984. URL https://ieeexplore.ieee.org/document/5010248.

Thomas Zimmermann, Nachiappan Nagappan, Harald Gall, and et al. Predicting defects
for eclipse. In Proceedings of the Third International Workshop on Predictor Models in Software
Engineering, pp. 9–15, 2007. URL https://dl.acm.org/doi/10.1109/PROMISE.2007.10.

A Information-Theoretic Formalization of Hallucination Propagation

In this section, we present a formal information-theoretic perspective on hallucination
propagation in generative code models. Our aim is to characterize how local uncertainty
or hallucination at a specific point in the output can influence downstream code segments
through dependency structures.

A.1 Entropy of Local Generation

Let Y = (y1, y2, . . . , yT) be the sequence of generated tokens, and let x denote the input
prompt. The conditional entropy of token yt given the prompt and past context is:

H(yt | x, y<t) = −∑
yt

P(yt | x, y<t) log P(yt | x, y<t)

A high entropy value indicates generation uncertainty or ambiguity at position t, which
may signal the presence of a local hallucination anchor.

We define a hallucination anchor yta as a token (or token span) where entropy exceeds a
semantic confidence threshold τ:

yta ∈ Y iff H(yta | x, y<ta) > τ

12

https://arxiv.org/abs/2305.02309
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2307.14539
https://link.springer.com/article/10.1007/s10664-025-10614-4
https://link.springer.com/article/10.1007/s10664-025-10614-4
https://dl.acm.org/doi/full/10.1145/3643681
https://arxiv.org/abs/2501.09431
https://ieeexplore.ieee.org/document/5010248
https://dl.acm.org/doi/10.1109/PROMISE.2007.10

Published as a conference paper at COLM 2025

A.2 Dependency Graph and Information Flow

Let the generated program be parsed into an Abstract Syntax Tree (AST), where each node
ni corresponds to a semantic unit (e.g., variable, call, branch). Define a directed dependency
graph G = (V, E) over AST nodes, where (ni → nj) ∈ E if nj is semantically dependent on
ni (e.g., use-def, control flow, data flow).

Assume node na is rooted in a hallucination anchor token. The set of transitive dependents
is:

P(na) = {n ∈ V | ∃ path na → · · · → n}

These nodes inherit semantic uncertainty from na, forming the hallucination propagation
frontier.

We define the total hallucination propagation entropy as:

Hprop(na) = ∑
ni∈P(na)

H(yt(ni)
| x, y<t(ni)

)

where t(ni) maps node ni to its generating token position.

A.3 Mutual Information Loss from Pruning

Let Ŷ be the generated output after pruning all nodes in P(na). To quantify the information
loss due to pruning, we define:

Iprune = I(Y; Ŷ) = H(Y)− H(Y | Ŷ)

This reflects how much mutual information between the full output and the pruned version
is lost. Ideally, for a safe and semantically clean pruning operation, we want:

Iprune ≪ Hprop(na)

That is, the amount of information lost due to pruning is less than the noise introduced by
the hallucination chain.

A.4 Structural Risk Amplification via Entropy Flow

We further hypothesize that hallucination propagation exhibits an entropy amplification
effect over code structures. That is, structural nodes that depend on high-entropy anchors
accumulate compounded risk. We model this as:

V(nj) ∝ ∑
ni∈Ancestors(nj)

λd(ni ,nj)H(yt(ni)
| x, y<t(ni)

)

where d(ni, nj) is the graph distance from ancestor ni to nj, and λ ∈ (0, 1] is a decay
factor. This models structural vulnerability risk V(nj) as a decayed aggregation of upstream
entropy.

A.5 Implications for Defense

Under this formulation, structural trimming can be interpreted as an entropy-suppression
strategy. By pruning subtrees P(na) that are entropy-amplifying and semantically non-
grounded, we reduce both:

- The total propagated uncertaintyHprop; - The cumulative downstream vulnerability V(nj).

This formalism motivates a defensible objective for hallucination mitigation:
min
P
Hprop(P) s.t. AST validity and task retention preserved

13

Published as a conference paper at COLM 2025

B CVSS Mapping and Vulnerability Scoring Calculation

B.1 Introduction to CVSS

The Common Vulnerability Scoring System (CVSS), developed under the leadership of
the National Institute of Standards and Technology (NIST), is the most commonly used
quantitative metric for vulnerability severity in the industry today. The CVSS Base Score
quantifies the intrinsic risk of a vulnerability on a scale of [0, 10], and its scoring components
include:

• Attack Vector (AV): The possibility of local or remote (Network) attacks.

• Attack Complexity (AC): The difficulty of exploiting the vulnerability.

• Privileges Required (PR): Whether high privileges are required.

• User Interaction (UI): Whether it relies on user interaction.

• Confidentiality (C) / Integrity (I) / Availability (A) Impact: The potential degree of
damage to system data and services.

In addition, CVSS also defines the Environmental Score and Temporal Score, which are used
for scenario adjustment and vulnerability lifecycle modeling, respectively.

B.2 Collu-Bench Error Type and CVSS Mapping

We mapped the error types automatically extracted in Collu-Bench with the CVSS Base
Score criteria to construct a normalized vulnerability risk score V.

The CVSS Base Score references its calculation specification2. Based on this, we simplified
the parameter configuration in the context of code generation (assuming local execution, no
user interaction) and uniformly normalized the Base Score to V = Base Score/10.

B.3 Frequency Adjustment and Environmental Modeling

To reflect the impact of error distribution in real data on the overall system security, we
introduced an environmental scoring mechanism, using the frequency F of error types as an
adjustment factor to modify the base risk score:

Vadjusted = Vbase · (1− wF · F)

where wF is the frequency adjustment weight (set to 0.2 in this paper), and F is the frequency
of the error type in the dataset. This strategy simulates the potential cumulative risk caused
by a large number of repetitive errors in a real deployment environment.

B.4 Theoretical and Practical Value

Assigning quantifiable security risk scores to generated code errors using the CVSS frame-
work has the following three advantages:

• Standardization: Consistent with vulnerability databases such as NVD and CWE,
facilitating integration with existing toolchains.

• Comparability: Errors from different model outputs can be compared on a unified
scale of security impact.

• Theoretical Support: The CVSS architecture has recognized modeling capabilities
for attack cost and impact, which can be used for vulnerability prioritization and
strategy optimization.

2CVSS v3.1 Specification:https://www.first.org/cvss/specification-document

14

https://www.first.org/cvss/specification-document

Published as a conference paper at COLM 2025

C Typology of Structural Hallucinations

To support our taxonomy of structural hallucinations, we summarize the seven types
identified in our dataset, along with their propagation patterns and pruning strategies.
Table 3 provides an overview, and concrete examples are included below to illustrate each
type.

Label Name Structural Pattern Example Pruning Recommendation

persistent Persistent Halluci-
nation

Hallucinated anchor is re-
peatedly referenced until
the end of the code. Diffi-
cult to cut naturally.

config →
config["enabled"]
→ config["fast val"]

Replace or comment out
the anchor at its first occur-
rence to prevent propaga-
tion.

early cut Early-Cut Type Anchor is only referenced
once or twice and then
dropped.

Hallucinated variable
used before early return.

Insert pruning before
return or add guard
checks.

mid cut Mid-Cut Type Anchor spreads 2–3 layers
deep, stopped by logic or
structure.

Propagation ends in if
block.

Intercept hallucination at
intermediate depth.

recurrent Recurrent Halluci-
nation

Anchor is initially pruned
but reappears through alias-
ing.

config pruned, but
mode = config["type"]
reused.

Apply global sanitization or
alias tracking.

late hallucinationLate Hallucina-
tion

Anchor appears only in fi-
nal stages of code (e.g., re-
turn or output).

return
config["final value"]

Add checkers at output
stage.

oscillating Oscillating Pat-
tern

Anchor appears inconsis-
tently across branches or
loops.

config in if but not in
else.

Apply uniform trimming
across all control flows.

clean Clean Case No hallucinated anchors or
structural propagation.

Use of input data is
fully valid.

No pruning needed; serves
as baseline.

Table 3: Typology of structural hallucinations and their corresponding pruning strategies.
Each type reflects a unique propagation pattern and trimming implication.

D Dataset and Annotation Details

D.1 Sample Construction and Prompt Sources

We collect 7,233 hallucinated code samples generated from the following models:

• GPT-4o (May 2024)

• DeepSeek-Coder-1.3B

• CodeLlama-7B-Instruct

• Gemini-2.0-flash

We use a fixed generation configuration: temperature=0.7, top p=0.95, max tokens=512,
and stop=[‘‘###’’, ‘‘\n\n’’] to ensure stylistic consistency.

Prompts are sampled from:

• MBPP and HumanEval: Standard evaluation benchmarks.

• Security-critical prompts (300 total): Curated by us to stress low-level control,
symbolic reasoning, and input validation, e.g., “Validate password strength with
entropy scoring”, “Simulate a memory-safe linked list in C-style pointer emulation”.
These tasks are designed to induce subtle hallucinations in logic or API usage.

D.2 Anchor Detection via AST and Runtime Traces

We define a hallucination anchor as an AST node (identifier, expression, or control block)
that:

15

Published as a conference paper at COLM 2025

Example 1: Persistent Hallucination

config = {"enabled": True} # hallucinated object

if config["enabled"]:
if config["fast_val"]: # repeated dependency on config

run_fast_mode ()
else:

run_safe_mode ()

Example 2: Early-Cut Hallucination

if user_input is None:
logger.warn("Invalid␣input.")
return # early return cuts hallucinated use

speed = user_input["speed"] # hallucination only appears once

Example 3: Mid-Cut Hallucination

params = get_default_params ()

if params["debug"]: # hallucinated use
if "log_level" in params: # cut point

set_log_level(params["log_level"])

Example 4: Recurrent Hallucination

First occurrence of hallucinated anchor
cfg = {"mode": "test"}

Later reused in indirect form
if cfg["mode"] == "test":

verbose = True

Recurrent hallucination despite trimming cfg earlier
run_mode = cfg.get("execution_mode") # reappears here

Example 5: Late Hallucination

model = build_model ()

train_model(model)

hallucinated return appears late
return model["final_state"]

• Has no grounding in the reference solution or provided environment.
• Contributes directly to a failed execution, as verified by dynamic tracing.

We adapt and extend CODEHALU Ji et al. (2023b) for anchor detection by combining:

16

Published as a conference paper at COLM 2025

Example 6: Oscillating Hallucination

if args.verbose:
print(config["version"]) # hallucinated

else:
print("Running ...") # clean path

Example 7: Clean Case (No Hallucination)

def preprocess(data):
if "user_id" in data:

return data["user_id"]
return None # clean , legal use of input

• AST diffing against reference code (via RedBaron).
• Runtime failure traces to identify trigger lines and exception context.

Classifier Implementation Details. The transformer-based classifier fASTClass is a 6-layer
encoder-only architecture with 8 attention heads and 512-dimensional hidden states, trained
to predict hallucination types from linearized AST path sequences. The input sequence
is derived from the serialized AST of ŷ following a path-based encoding scheme inspired
by CODE2VEC Alon et al. (2019) and CODEBERT Feng et al. (2020), including subtree
normalization and node flattening.

D.3 Vulnerability Scoring (V)

We compute a normalized vulnerability score V ∈ [0, 1] for each hallucinated sample using
a hybrid method:

1. Static pattern scoring: Presence of high-risk constructs (e.g., unchecked user input,
infinite loops, unsafe recursion).

2. Dynamic assertion oracle: Failure to pass reference tests or sanity checks (e.g.,
input-output mismatch, assertion violations).

3. CVSS-lite mapping: Based on three simplified axes
• Severity: Based on impact on functionality (e.g., crash vs. semantic bug).
• Scope: Local or global code effect.
• Fixability: Degree of minimal required repair (1-line vs. structural).

Each axis is scored 0–1 and averaged to obtain final V. We find this score correlates strongly
with user-perceived code risk in pilot studies.

D.4 Execution Environment and Sandbox Implementation

All experiments are conducted on a Debian-based server with:

• A100
• 80 GB RAM
• Python 3.9.18

We use a custom exec sandbox module to execute generated samples safely, supporting:

17

Published as a conference paper at COLM 2025

Example Sandbox Code

def exec_in_sandbox(code_str):
import builtins , traceback
try:

exec(code_str , {"__builtins__": safe_builtins })
except Exception as e:

return {"error": type(e).__name__ , "trace": traceback.
format_exc ()}

• Controlled imports and runtime exception tracing

• Timeout and memory limits

• Coverage tracking via trace and coverage modules

E Hallucination Vulnerability Distribution Matching

To quantify the alignment between hallucination types and vulnerability classes, we com-
pute cosine similarity between hallucination–vulnerability co-occurrence vectors derived
from model predictions and those derived from manual annotations.

Setup. Each hallucination type hi is associated with a discrete distribution over vulnerabil-
ity classes vj, computed as normalized frequency counts across the hallucinated dataset. We
construct two such vectors per hallucination type: one inferred from the model’s structural
classifier output, and one from manually annotated labels. The similarity is then computed
using:

sim(hi) =
v⃗(i)model · v⃗

(i)
gold∥∥∥v⃗(i)model

∥∥∥ ∥∥∥v⃗(i)gold

∥∥∥
This approach is adapted from distributional alignment methods used in both security log
analysis Han et al. (2024) and hallucination detection Ji et al. (2023a).

Results. Table 4 reports the cosine similarity between model-predicted and gold vulnera-
bility distributions for each hallucination type. Values closer to 1 indicate stronger structural
alignment.

Table 4: Cosine similarity between predicted and ground-truth vulnerability distributions
per hallucination type.

Hallucination Type Cosine Similarity

Suspicious Comparison 0.6271
Potential Overflow 0.7056
Potential InfiniteLoop 0.3198
None 0.2315
No Exception Handling 0.4463
Index Error 0.6819
Code Injection 0.5122

18

Published as a conference paper at COLM 2025

Analysis. We observe strong alignment for hallucination types with clear structural an-
chors, such as Potential Overflow and Index Error. These typically arise from list indexing,
loop bounds, or arithmetic overflows, all of which manifest as recognizable AST patterns.
In contrast, hallucinations like None or InfiniteLoop show weaker alignment, likely due
to their diffuse or context-sensitive nature. Overall, the results validate that vulnerability
semantics can be reliably inferred from structurally grounded hallucinations.

F Trimming Stability and Outlier Effects

While the main text reports overall trends in trimming-based risk reduction, we provide
additional detail here regarding statistical stability and outlier sensitivity in trimming
experiments.

Algorithm 1: Structural Trimming for Hallucination Mitigation
Input: Generated code C, AST T, hallucination anchor na
Output: Repaired code Ĉ
Initialize N ← {na};
while n ∈ N has dependents do
N ← N ∪Descendants(n);

Prune N from T to obtain T′;
Ĉ ← AST to Code(T′);
if Ĉ valid then

return Ĉ
else

Apply fallback repair; return Ĉsa f e

2 4 6 8 10 12 14 16 18
Hallucination Chain Length (HCL)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ri
sk

 R
ed

uc
tio

n
(

V)

0

50

100

150

200

250

Sa
m

pl
e

Si
ze

Hallucination Chain Length vs. Risk Reduction (with Sample Size)

Mean V
±1 Std. Dev.
Sample Size

Figure 7: Regression relationship between combined task complexity Tcombined and vulnera-
bility probability V. The regression line slope is close to zero, indicating a lack of significant
linear trend between superficial complexity and vulnerability risk.

On the ∆V Peak at HCL = 17. In Figure 7, a pronounced peak in vulnerability reduction
(∆V = 0.41) appears at Hallucination Chain Length (HCL) of 17. This value, while indicative
of potential high-risk propagation, arises from a small sample (n = 7), and may not
generalize. We interpret this as an extreme case where long, entangled hallucination chains
introduce significant failure potential, but caution that such spikes should be viewed in
light of underlying data sparsity.

Sample Distribution Across HCL Buckets. Most HCL intervals are supported by suffi-
cient sample sizes (n > 100 for HCL ≤ 10), ensuring robustness of observed average ∆V
values. However, for HCL > 15, several bins fall below n < 20, increasing the variance of
empirical estimates.

19

Published as a conference paper at COLM 2025

Smoothing and Confidence Estimation. To mitigate overfitting to rare points, we ex-
perimented with simple kernel density estimation (KDE) smoothing and bootstrapped
confidence intervals. While these techniques help normalize spikes, they also blur meaning-
ful variation across HCL regimes. In the final version, we report raw means with sample
size overlays to preserve interpretability. Future work may incorporate Bayesian shrinkage
or density-weighted regression to balance stability and resolution.

The overall effectiveness of Structural Trimming is robust across trimming strategies and
hallucination types. However, results involving long dependency chains or rare hallu-
cination patterns should be interpreted with appropriate statistical caution. We release
per-bucket counts and variance metrics in our codebase to facilitate reproducibility and
deeper follow-up analysis.

F.1 Structural Patterns Underlying Risk Mitigation

Early and mid pruning consistently outperform persistent strategies in reducing vulnerabil-
ity (Figure 8), with early-cut yielding higher median ∆V and lower variance—suggesting
that timely structural intervention more effectively disrupts hallucination chains. Struc-
tural profiles (Figure 9) reveal that persistent-cut samples exhibit deeper entanglement
(higher HCL, SCP, entropy) but lower pruning affordance (PR), whereas early-cut samples
are shallower and more trim-friendly. Correlation analysis (Figure 10) further shows that
while structural depth correlates with hallucination persistence, only PR strongly predicts
mitigation success, underscoring the primacy of intervention feasibility over complexity.

Early Cut Mid Cut Persistent Cut
Pruning Strategy

0.1

0.2

0.3

0.4

0.5

Ri
sk

 R
ed

uc
ti

on
 (

V)

V Distribution by Pruning Strategy

Figure 8: Risk reduction
(∆V) across pruning strate-
gies. Early/mid-cut outper-
form persistent-cut.

HCL

Original
APS

PRSCP

Graph
Entropy

0.0

0.2

0.4

0.6

0.8

1.0

Structural Features by Pruning Strategy

Strategy
Mid Cut
Persistent Cut
Early Cut

Figure 9: Normalized
structural metrics by strat-
egy. Persistent-cut shows
deeper, more complex
chains.

HCLOriginal
APS

PR SCP Graph
Entropy

V

HC
L

Or
ig

in
al

AP
S

PR
SC

P
Gr

ap
h

En
tro

py
V

0.94

-0.45 -0.49

0.94 0.89 -0.42

0.95 0.90 -0.43 0.90

0.05 0.04 0.83 0.06 0.05

Spearman Correlation of Structural Features

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 10: Spearman corre-
lations among features and
∆V. PR dominates as a pre-
dictor of risk reduction.

Structural Profile of Hallucination Types. To assess structural variation across hallucination
behaviors, we compare their distributions over three core metrics: HCL (dependency reach),
Graph Entropy (subtree disorder), and SCP (cutability). Figure 11 summarizes these
distributions.

Persistent and recurrent hallucinations consistently exhibit longer chains and higher entropy,
reflecting deeper entanglement. In contrast, early-cut and clean samples are structurally
simpler, making them easier to isolate.

G Fallback Repair for Trimming-Induced Syntax Errors

Structural Trimming may remove subtrees in the Abstract Syntax Tree (AST) that contribute
to syntactic well-formedness (e.g., removing an if-block body or a required return state-
ment). To maintain executable output, we apply a lightweight fallback patching procedure
when trimmed code fails syntax checks.

Patch Strategy. Our repair mechanism consists of three stages:

20

Published as a conference paper at COLM 2025

persist
ent

late_hallucination
recurrent

mid_cut
clean

oscillating
early_cut

Hallucination Type

2.5

5.0

7.5

10.0

12.5

15.0

17.5
H

al
lu

ci
na

ti
on

 C
ha

in
 L

en
gt

h
HCL

persist
ent

late_hallucination
recurrent

mid_cut
clean

oscillating
early_cut

Hallucination Type

1

2

3

4

5

6

G
ra

ph
 E

nt
ro

py

Graph Entropy

persist
ent

late_hallucination
recurrent

mid_cut
clean

oscillating
early_cut

Hallucination Type

2.5

5.0

7.5

10.0

12.5

15.0

17.5

SC
P

SCP

Structural Features by Hallucination Type

Figure 11: Distribution of structural features across hallucination types. Persistent hallucina-
tions exhibit longer propagation chains and higher topological disorder.

1. Validation: After trimming, we parse the reconstructed code using a Python syntax
checker (e.g., ast.parse). If no errors are raised, the code is returned as-is.

2. Structural Gap Detection: If parsing fails, we locate empty or malformed AST
constructs (e.g., empty function bodies, control blocks without statements, orphaned
expressions).

3. Minimal Patching: We insert semantically inert placeholders such as pass (for con-
trol structures), or return None (for dangling return paths). These patches preserve
syntactic validity without altering functional intent beyond already-trimmed logic.

Scope and Guarantees. Our patching procedure is strictly local and does not attempt to
infer or restore original program semantics. Its sole goal is to ensure syntactic correctness
after trimming, so that execution-based risk scoring remains applicable. Less than 8.3% of
trimmed samples required patching, and all were resolved using the above mechanism.

Limitations. Fallback repair is intended as a pragmatic safeguard rather than a robust
rewriting tool. In rare cases, structural trimming may remove too much context for the
remaining code to be meaningful or verifiable. We report such cases separately as “trimmed-
invalid” and exclude them from semantic evaluation metrics.

H Visual Comparison of Repair Strategies

To complement the quantitative results in Section 4, we provide illustrative examples of
the four hallucination repair strategies applied to the same hallucinated code sample. Each
panel highlights how the strategy modifies the generated code, along with associated BLEU
and AST similarity scores.

Why Prompt Rewriting Often Fails. As shown in Figure 12 (PR panel), even after modify-
ing the prompt to remove ambiguity, the model still regenerates the hallucinated function
call get config(). This illustrates a common failure case: Prompt Rewriting (PR) is limited
by the model’s training priors and spurious template associations. Even minor changes
to the input often fail to override deeply ingrained hallucination patterns, especially for
high-level task descriptions (e.g., ”run pipeline”) that frequently co-occur with flawed
boilerplate code. Thus, PR is insufficient for hallucinations rooted in entrenched generation
biases.

Why Semantic Filtering Only Partially Works. Semantic Filtering (SF), shown in the sec-
ond panel of Figure 12, replaces the hallucinated configuration with a grounded alternative
(e.g., {”lr”: 0.001}). However, it does not remove downstream hallucinated logic—such as
model[”final state”]—which often contains invalid or unsupported access patterns. This

21

Published as a conference paper at COLM 2025

Prompt
Rewriting
(PR)

def
run pipeline():
cfg =

get config()
model =

build model(cfg)
history =

train model(model)
return

model["final state"]
BLEU: 0.65

AST: 0.60

Semantic Fil-
tering (SF)

def
run pipeline():
cfg = {"lr":

0.001}
model =

build model(cfg)
history =

train model(model)
return

model["final state"]
BLEU: 0.77

AST: 0.81

Token Pruning
(TP)

def
run pipeline():
cfg =

get config()
model =

build model(cfg)
history =

train model(model)
return

model[”final state”]
BLEU: 0.42

AST: 0.35

Structural
Trimming (ST)

def
run pipeline():
history =

train model(None)
return

history[-1]
BLEU: 0.80

AST: 0.84

Figure 12: Qualitative comparison of repair strategies on a hallucinated function. Red
indicates hallucination anchors, green indicates safe substitutions, and gray strikethrough
indicates removed code segments.

reveals a key limitation of SF: while semantically informed, it lacks the structural aware-
ness to trace and eliminate propagated errors beyond the initial anchor. As a result, SF
achieves modest improvements in vulnerability without guaranteeing syntactic or runtime
correctness.

Why Token Pruning Breaks Semantics. Token-Level Pruning (TP) halts generation imme-
diately after detecting a hallucination anchor. As visualized in the TP panel, the hallucinated
anchor get config() is preserved, but all subsequent lines (e.g., training history, return state-
ment) are struck out, leaving the function body semantically incomplete. This pruning
aggressively reduces risk, but sacrifices code coherence and often produces non-compilable
fragments. Therefore, TP achieves vulnerability mitigation at the cost of severe usability
degradation.

Why Structural Trimming Balances Safety and Fidelity. Our method Structural Trimming
(ST) prunes the hallucination chain from the AST, removing only structurally dependent
and semantically suspect branches. As shown in the final panel of Figure 12, ST eliminates
both the hallucinated config and the invalid return value, substituting them with safe alter-
natives (e.g., history[-1]). This preserves execution logic and structure while neutralizing
vulnerabilities. Compared to other baselines, ST achieves the best balance between risk
reduction and code fidelity, reflected in its superior BLEU and AST scores.

These visualizations support the quantitative findings in Table 2, confirming the superior
fidelity and risk mitigation performance of Structural Trimming.

I CSHS Weight Optimization (Ablation Study)

We perform ablation studies to evaluate the design of our CSHS scoring function. Specifically,
we sample 300 combinations of normalized weights (w1, . . . , w5) across the five structural
features. For each configuration, we compute CSHS scores and evaluate their predictive
power on risk reduction ∆V (regression) and effective trimming (∆V > 0.2 classification).

Observation. Recoverability-related features, especially the pruning rate (PR), are consis-
tently assigned high weights in optimal configurations. This suggests that recoverability
contributes more to risk mitigation than raw structural depth.

J pairplotmatrix

The observed feature correlations validate our multi-dimensional structure modeling.

22

Published as a conference paper at COLM 2025

w1 (HCL) w2 (APS) w3 (Entropy) w4 (PR) w5 (SCP) R2 MSE AUC

0.116 0.266 0.017 0.440 0.161 0.899 0.0013 0.979
0.005 0.221 0.198 0.433 0.143 0.888 0.0014 0.979
0.103 0.271 0.015 0.380 0.230 0.887 0.0015 0.980
0.073 0.216 0.059 0.633 0.019 0.884 0.0015 0.991
0.030 0.292 0.034 0.429 0.215 0.882 0.0015 0.988

Table 5: Top-5 weight configurations for CSHS scoring. PR and APS dominate most high-
performing settings.

K Cross-Model Generalization of CSHS

To evaluate whether our proposed Compositional Structural Hallucination Score (CSHS)
generalizes across different large language models (LLMs), we conduct a preliminary cross-
model validation experiment.

K.1 Experimental Setup

We use hallucinated code samples generated by three different models: GPT-4o,
DeepSeekCoder-1.3B, and CodeLlama-7B. For each model, we compute structural features
and the corresponding CSHS score as described in Section 3.3.

To assess generalization, we adopt a leave-one-model-out strategy: for each run, we train
a logistic regression classifier using the CSHS feature on two models and test it on the
held-out third model. The classification task is to predict whether a hallucinated sample has
a vulnerability risk V > 0.5 (as computed using the execution-based risk label in Section 3.2).

K.2 Results

Train Models Test Model AUC Accuracy

DeepSeek + CodeLlama GPT-4o 0.871 0.802
GPT-4o + CodeLlama DeepSeek 0.845 0.781
GPT-4o + DeepSeek CodeLlama 0.882 0.816

Table 6: Cross-model prediction results using CSHS to classify vulnerability-prone halluci-
nations (V > 0.5).

K.3 Analysis

As shown in Table 6, the CSHS-based classifier generalizes well across models, consistently
achieving AUCs above 0.84. This demonstrates that structural signals extracted from
hallucinated code carry predictive information that is robust across LLM architectures. The
results further validate CSHS as a transferable metric and suggest the feasibility of building
universal hallucination risk estimators.

K.4 Limitations

We acknowledge that this preliminary study does not account for variation across task
types or domains (e.g., MBPP vs. HumanEval). Moreover, CSHS is designed to measure
structural entanglement rather than semantic inconsistency; future work may explore hybrid
scoring schemes that combine CSHS with embedding-based or dynamic execution features
to improve robustness.

23

Published as a conference paper at COLM 2025

K.5 Multi-Dimensional Visualization of Repair Trade-offs

To complement our quantitative comparisons in Section 5.5, we present a 3D visualization
capturing the multi-dimensional trade-off between vulnerability mitigation, semantic fidelity,
and structural retention across different hallucination repair strategies.

Figure 13: Safety–Fidelity–Structure Trade-off across hallucination repair methods. Each
strategy is represented as a 3D bubble whose position corresponds to: BLEU score (semantic
fidelity, X-axis), risk reduction ∆V (safety improvement, Y-axis), and AST similarity (struc-
tural preservation, Z-axis). Bubble sizes reflect the number of affected samples. The dotted
path connects strategies from Prompt Rewriting (PR) to Structural Trimming (ST), showing
an upward trajectory toward better trade-offs.

As shown in Figure 13, Structural Trimming (ST) clearly dominates along all three axes,
achieving the highest vulnerability reduction (∆V), strong semantic retention (BLEU≈ 0.80),
and minimal structural disruption (AST similarity ≈ 0.84). In contrast, Prompt Rewriting
(PR) yields faster, lighter edits but achieves only modest safety gains and often harms
structural alignment.

Notably, the transition path (PR→ SF→ TP→ ST) reveals a smooth optimization trajec-
tory: each successive method incrementally improves security at the cost of higher repair
complexity, culminating in ST’s fine-grained structural pruning. This visualization supports
our broader claim that hallucination repair is not a binary fix/no-fix problem, but rather a
spectrum of risk–fidelity trade-offs that structural methods can best navigate.

L Ablation Study of CSHS Components

We ablate the Compositional Structural Hallucination Score (CSHS) to assess the contribu-
tion of its constituent features and design choices. As shown in Table 7, the full model, using
normalized features with optimized weights—achieves the best regression (R2 = 0.651) and
classification (AUC = 0.914) performance.

Among components, the recoverability signals (Pruning Rate and Shortest Correction Path)
alone retain most predictive power (R2 = 0.573, AUC = 0.848), whereas structural depth
features (HCL, APS, Entropy) offer negligible contribution (R2 = 0.002). This suggests that
vulnerability mitigation hinges more on fixability than on syntactic complexity.

24

Published as a conference paper at COLM 2025

Disabling feature normalization severely impairs performance (R2 = 0.033), confirming
the importance of scale alignment across heterogeneous metrics. Using uniform weights
further reduces stability and accuracy (AUC = 0.716), highlighting that principled score
construction is essential to robustness.

These results underscore that recoverability dominates risk mitigation, and validate CSHS
as both empirically grounded and structurally interpretable.

Variant R² (Regression) MSE Accuracy AUC (Classification)

Full Model (Optimized) 0.651 0.0041 0.848 0.914
Risk-Only (HCL+APS+Entropy) 0.002 0.0113 0.719 0.505
Recoverability-Only (PR+SCP) 0.573 0.0053 0.828 0.848
No Normalization 0.033 0.0099 0.719 0.593
Random Weights (Uniform) 0.189 0.0083 0.742 0.716

Table 7: Ablation of CSHS design choices. Recoverability features dominate prediction
performance. Normalization and principled weighting are critical for score reliability.

M Extended Case Studies and Visualizations

To better illustrate the behavioral dynamics of hallucination propagation and the effects of
structural trimming, we present two representative case studies. One showcases a successful
intervention on deeply entangled symbolic chains, and the other demonstrates a failure
mode due to over-pruning legitimate logic.

M.1 Case A: Mid-Level Trimming of Deep Symbolic Hallucination

In this example, the hallucinated variable tempMap is introduced as part of a nested dictionary
comprehension. While it appears benign, tempMap is subsequently referenced in multiple
branches, including a conditional update and a fallback clause. Trimming the anchor
assignment node alone is insufficient, as dependent usages persist in unreachable paths.
Only a mid-level structural cut successfully eliminates all references while preserving
syntactic integrity. The AST view highlights the transitive chain length (HCL=6) and
multiple anchor reuse points (APS=3).

Original Hallucinated Code (Anchor: tempMap)

def config parser():
cfg = tempMap["base"]
if cfg:
tempMap["flag"] = True
return build(cfg)

HCL: 6, APS: 3, BLEU: 0.31

Structural Trimming Output

def config parser():
cfg = None
return build(cfg)

BLEU: 0.72, AST: 0.85

Figure 14: Case A: Hallucinated symbol tempMap propagates across multiple branches.
Mid-level trimming eliminates entangled nodes (HCL=6, APS=3), improving structural
integrity and execution safety.

25

Published as a conference paper at COLM 2025

M.2 Case B: Failure Case Over-Pruning of Shared Scope

Here, the hallucinated anchor involves a mistyped function get config(), introduced at
the top level. A naive trimming strategy removes the entire block containing get config(),
including a legitimate helper function defined in the same scope. The resulting code fails
to execute due to a missing reference in the main routine. This demonstrates that overly
aggressive trimming may induce regressions when hallucinations are interleaved with
correct logic. Introducing dependency-aware constraints or context-preserving pruning
remains an open challenge.

Token Pruning (Failure Case)

def run pipeline():
cfg = get config()
model = build model(cfg)
helper = init(cfg)
return helper.finalize()

BLEU: 0.42, AST: 0.28 (Execution fails)

Trimming Output (Bug Induced)

def run pipeline():
model = build model(None)
return helper.finalize()

SyntaxError: helper not defined

Figure 15: Case B: Over-pruning the hallucinated anchor get config() causes removal of a
shared-scope helper, resulting in an unresolved reference (helper not defined).

N CSHS Generalization Across Models and Tasks

We assess the generalizability of CSHS beyond its original training context by evaluating its
transfer performance across models and tasks.

26

	Introduction
	Extended Related Work
	Problem Formulation and Risk Modeling
	Core Variables and Risk Modeling
	Dataset and Experimental Setup

	Structural Risk Signals and CSHS Scoring
	Hallucination Annotation Pipeline
	Structure-Aware Signal Extraction
	Compositional Risk Scoring with CSHS

	Why Hallucinations are Dangerous?
	Hallucination–Vulnerability Alignment via Structural Modeling
	Correlation Between Hallucination Severity and Vulnerability Risk
	Does Task Complexity Influence Hallucination-Induced Vulnerability?

	How to Defend Hallucinations Structurally?
	Structural Hallucination Chains Exist
	Trimming-Based Risk Mitigation
	Interpretability via Structural Case Studies
	Comparative Effectiveness of Structural Trimming

	Discussion
	Conclusion
	Information-Theoretic Formalization of Hallucination Propagation
	Entropy of Local Generation
	Dependency Graph and Information Flow
	Mutual Information Loss from Pruning
	Structural Risk Amplification via Entropy Flow
	Implications for Defense

	CVSS Mapping and Vulnerability Scoring Calculation
	Introduction to CVSS
	Collu-Bench Error Type and CVSS Mapping
	Frequency Adjustment and Environmental Modeling
	Theoretical and Practical Value

	Typology of Structural Hallucinations
	Dataset and Annotation Details
	Sample Construction and Prompt Sources
	Anchor Detection via AST and Runtime Traces
	Vulnerability Scoring (V)
	Execution Environment and Sandbox Implementation

	Hallucination Vulnerability Distribution Matching
	Trimming Stability and Outlier Effects
	Structural Patterns Underlying Risk Mitigation

	Fallback Repair for Trimming-Induced Syntax Errors
	Visual Comparison of Repair Strategies
	CSHS Weight Optimization (Ablation Study)
	pairplotmatrix
	Cross-Model Generalization of CSHS
	Experimental Setup
	Results
	Analysis
	Limitations
	Multi-Dimensional Visualization of Repair Trade-offs

	Ablation Study of CSHS Components
	Extended Case Studies and Visualizations
	Case A: Mid-Level Trimming of Deep Symbolic Hallucination
	Case B: Failure Case Over-Pruning of Shared Scope

	CSHS Generalization Across Models and Tasks

